Ôn thi đại học môn Toán: Phân tích chuyên đề Lượng giác

Lượng giác là phần kiến thức xuất hiện trong cuối học kì II phần đại số Toán lớp 10 và là mảng kiến thức trọng tâm của phần đại số Toán lớp 11. Nói về Lượng giác thì khối lượng kiến thức là rất rộng.

Ảnh minh họa
Ảnh minh họa

 

Theo khảo sát thì khoảng 10 năm trở lại đây thì cả 3 khối A, B, D đề đều chỉ ra dạng câu hỏi là  “Giải phương trình lượng giác”. Chon nên trong bài viết này ta chỉ đề cập đến “Phương trình lượng giác”.

 Như đã biết từ THCS thì các kiến thức về lượng giác đã xuất hiện và được sử dụng nhiều trong quá trình giải toán đặc biệt là hình học lớp 9. Nhưng nó chỉ dừng lại ở mức độ các kiến thức sơ khai, chưa đi sâu.

Khi học lên THPT thì lượng giác được mở rộng và đi sâu hơn, trở thành một trong những kiến thức trọng tâm trong không thể thiếu trong đề thi tuyển sinh đại học, cao đẳng.  

Đây cũng là một trong những bài dễ lấy điểm đối với hầu hết các thí sinh và là phần chiếm 1 điểm trong đề thi đại học. Tuy nhiên để làm tốt bài toán này thì điều đầu tiên là phải “học thuộc” các công thức lượng giác. Nó như là điều kiện cần, trước khi giải toán lượng giác.

Tiếp đến là nắm chắc cách giải các dạng phương trình lượng giác cơ bản: phương trình thuần nhất với sinx, cosx; phương trình đa thức đối với 1 hàm số lượng giác; phương trình đẳng cấp bậc 2, bậc 3; phương trình đối xứng. Bởi cho dù 1 đề bài phức tạp đến thế nào thì sau cùng qua các bước biến đổi thì đều dẫn đến việc giải các phương trình lượng giác cơ bản.

Bởi vậy đừng nghe thấy từ “cơ bản” mà chủ quan không học dẫn tới dễ mất điểm hoặc không được điểm chọn ven. Ngoài ra để làm tốt phần này thì cần phải biết tư duy, vận dụng linh hoạt các công thức lượng giác vào trong quá trình biến đổi lượng giác. Và để có điều này, thì không còn con đường nào khác là phải luyện tập thường xuyên.

Khi giải phương trình lượng giác thì mục tiêu ta muốn hướng tới là đưa về phương trình lượng giác cơ bản thông thường ta sử dụng 3 cách sau:

+    Dùng các công thức lượng giác để biến đổi đưa về phương trình tích, hay biến đổi để đưa về các dạng phương trình lượng giác đã biết cách giải (thường xuất hiện trong đề thi cần tập chung vào phương pháp này).

+    Đặt ẩn phụ chuyển phương trình lượng giác ban đầu về phương trình đại số, tức là biến đổi về cùng 1 dạng hàm (sin, cos, tan hoặc cot)

+    Dùng các tích tính chất của bất đẳng thức để đánh giá.

Một số chú ý khi giải phương trình lượng giác

1.      Các công thức lượng giác thì có rất nhiều. Nhưng hầu hết chúng đều có mối quan hệ liên quan đến nhau. Bởi vậy ta cần có phương pháp học hợp lý thì mới có thể nắm chắc hết được các công thức ví dụ như: ta có thể dựa vào đường tròn lượng giác để các định giá trị các góc phụ, bù, đối. Hay đơn thuần chỉ cần nhớ “cos đối, sin bù, phụ chéo” là ta có thể xác định được :

Ôn thi đại học môn Toán: Phân tích chuyên đề Lượng giác - ảnh 1

Hay chỉ cần nhớ công thức tổng các hàm lượng giác thì ta có thể suy ra công thức tích các hàm lượng giác và ngược lại…

2.      Khi gặp phương trình chứa mẫu thì phải điều kiện cho mẫu khác không, hoặc gặp phương trình chứa tanx, cotx thì phải điều kiện cho sinx, cosx khác không.

3.      Nếu đề chứa nhiều biểu thức dài, công kềnh thì ta nên xử lý rút gọn từng biểu thức một để tránh nhầm lẫn.

Danh mục tài liệu Hocmai.vn cung cấp cho độc giả theo chuyên đề 

1.      Công thức lượng giác, phương trình lượng giác cơ bản

2.      Luyên tập phương trình lượng giác phần 1

3.      Luyện tập phương trình lượng giác phần 2

Hocmai.vn

Video đang được xem nhiều

Cùng chuyên mục

Xem thêm Luyện thi

Mới - Nóng